

aiohttp-tus

[image: CI Workflow]
 [https://github.com/pylotcode/aiohttp-tus/actions?query=workflow%3A%22ci%22][image: pre-commit]
 [https://github.com/pre-commit/pre-commit][image: black]
 [https://github.com/psf/black][image: Latest Version]
 [https://pypi.org/project/aiohttp-tus/][image: Python versions]
 [https://pypi.org/project/aiohttp-tus/][image: BSD License]
 [https://github.com/pylotcode/aiohttp-tus/blob/master/LICENSE][image: Documentation]
 [http://aiohttp-tus.readthedocs.org/en/latest/]tus.io [https://tus.io] server implementation for
aiohttp.web [https://docs.aiohttp.org/en/stable/web.html] applications.

For uploading large files, please consider using
aiotus [https://pypi.org/project/aiotus/] (Python 3.7+) library instead.

	Works on Python 3.6+

	Works with aiohttp 3.5+

	BSD licensed

	Latest documentation on Read The Docs [https://aiohttp-tus.readthedocs.io/]

	Source, issues, and pull requests on GitHub [https://github.com/pylotcode/aiohttp-tus]

Quickstart

Code belows shows how to enable tus-compatible uploads on /uploads URL for
aiohttp.web application. After upload, files will be available at ../uploads
directory.

from pathlib import Path

from aiohttp import web
from aiohttp_tus import setup_tus

app = setup_tus(
 web.Application(),
 upload_url="/uploads",
 upload_path=Path(__file__).parent.parent / "uploads",
)

Chunk Size

Please, make sure to configure client_max_size for aiohttp.web Application and
supply proper chunkSize for Uppy.io or other tus.io client.

Documentation [https://aiohttp-tus.readthedocs.io/en/latest/usage.html#understanding-tus-io-chunk-size]

CORS Headers

To setup CORS headers you need to use cors_middleware [https://aiohttp-middlewares.readthedocs.io/en/latest/usage.html#cors-middleware]
from aiohttp-middlewares [https://pypi.org/project/aiohttp-middlewares/] package. aiohttp-cors [https://pypi.org/project/aiohttp-cors/]
library not supported cause of
aio-libs/aiohttp-cors#241 [https://github.com/aio-libs/aiohttp-cors/issues/241]
issue.

Documentation [https://aiohttp-tus.readthedocs.io/en/latest/usage.html#cors-headers]

Reverse proxy and HTTPS

When aiohttp application deployed under the reverse proxy (such as nginx) with HTTPS
support, it is needed to use https_middleware [https://aiohttp-middlewares.readthedocs.io/en/latest/usage.html#https-middleware]
from aiohttp-middlewares [https://pypi.org/project/aiohttp-middlewares/] package to ensure that web.Request instance has proper
schema.

Documentation [https://aiohttp-tus.readthedocs.io/en/latest/usage.html#reverse-proxy-and-https]

Examples

examples/ [https://github.com/pylotcode/aiohttp-tus/tree/master/examples] directory
contains several examples, which illustrate how to use aiohttp-tus with some tus.io
clients, such as tus.py [https://pypi.org/project/tus.py/] and
Uppy.io [https://uppy.io].

Installation

pip install aiohttp-tus

Or using poetry [https://python-poetry.org/]:

poetry add aiohttp-tus

License

aiohttp-tus is licensed under the terms of BSD License [https://github.com/pylotcode/aiohttp-tus/blob/LICENSE].

Contents

	Usage
	Default

	Understanding tus.io Chunk Size
	aiohttp.web configuration

	nginx configuration

	tus.py configuration

	uppy.io Configuration

	CORS Headers

	Reverse proxy and HTTPS

	User Uploads

	On Upload Done Callback

	Mutliple TUS upload URLs

	Upload resource name

	API Reference
	aiohttp_tus

	aiohttp_tus.data

	Authors & Contributors

	Changelog
	1.0.0 (2020-06-08)

	1.0.0rc1 (2020-04-02)

	1.0.0rc0 (2020-03-26)

	1.0.0b2 (2020-03-18)

	1.0.0b1 (2020-03-18)

	1.0.0b0 (2020-03-15)

	1.0.0a1 (2020-03-12)

	1.0.0a0 (2020-03-11)

Usage

Default

To allow upload files to ../uploads directory for all clients via /uploads URL,

from pathlib import Path

from aiohttp import web
from aiohttp_tus import setup_tus

app = setup_tus(
 web.Application(),
 upload_path=Path(__file__).parent.parent / "uploads",
)

Understanding tus.io Chunk Size

By default, Uppy [https://uppy.io] and some other tus.io clients do not setup chunk
size and tries to upload as large chunk, as possible. However as
aiohttp.web.Application [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application] setting up client_max_size on app initialization
you might need to configure server to receive larger chunks as well as setup tus.io
client to use respected chunk sizes.

Examples below shown on how to config different parts to upload files with chunk size
of 4MB (4_000_000 bytes)

aiohttp.web configuration

from aiohttp import web
from aiohttp_tus import setup_tus

app = web.Application(client_max_size=4_000_000)

nginx configuration

location ~ ^/uploads.*$ {
 client_max_body_size 4M;
 proxy_pass http://localhost:8080;
}

tus.py configuration

tus-upload --chunk-size=4000000 \
 /path/to/large-file http://localhost:8080/uploads

uppy.io Configuration

uppy.use(Uppy.Tus, {
 endpoint: "http://localhost:8080/uploads",
 chunkSize: 3999999
})

Important

To make Uppy.Tus [https://uppy.io/docs/tus/] plugin work you need to specify
chunk size at least 1 byte smaller than client_max_size. If you’ll provide
chunk size equals to client max size upload will not work properly.

CORS Headers

At a moment (May 17 2020), aiohttp-tus supports setting up CORS Headers for
aiohttp.web application only via cors_middleware [https://aiohttp-middlewares.readthedocs.io/en/latest/usage.html#cors-middleware]
from aiohttp-middlewares [https://aiohttp-middlewares.readthedocs.io/] package.

As aiohttp-tus registers OPTIONS handlers it doesn’t work with
aiohttp-cors [https://github.com/aio-libs/aiohttp-cors] library cause of known issue
aio-libs/aiohttp-cors#241 [https://github.com/aio-libs/aiohttp-cors/issues/241].
(Full discussion [https://github.com/pylotcode/aiohttp-tus/issues/4])

To enable CORS Headers for your aiohttp.web application, which is using
aiohttp-tus, you need to,

	Install aiohttp-middlewares [https://aiohttp-middlewares.readthedocs.io/]

	In your app.py,

from pathlib import Path

from aiohttp import web
from aiohttp_middlewares import cors_middleware
from aiohttp_tus import setup_tus

Allow CORS Headers for requests from http://localhost:3000
app = web.Application(
 middlewares=(
 cors_middleware(origins=("http://localhost:3000",)),
)
)
setup_tus(
 app, upload_path=Path(__file__).parent.parent / "uploads",
)

Reverse proxy and HTTPS

When aiohttp web application with aiohttp-tus deployed under the reverse proxy
(such as nginx), with HTTPS support you need to setup
https_middleware [https://aiohttp-middlewares.readthedocs.io/en/latest/usage.html#https-middleware]
from aiohttp-middlewares [https://aiohttp-middlewares.readthedocs.io/] package to ensure that aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request]
instance has proper schema.

To use HTTPS middleware you need to,

	Install aiohttp-middlewares [https://aiohttp-middlewares.readthedocs.io/]

	In app.py,

from pathlib import Path

from aiohttp import web
from aiohttp_middlewares import https_middleware
from aiohttp_tus import setup_tus

app = web.Application(middlewares=(https_middleware(),))
setup_tus(
 app, upload_path=Path(__file__).parent.parent / "uploads"
)

User Uploads

To allow upload files to /files/{username} directory only for authenticated users
via /users/{username}/uploads URL,

from aiohttp_tus.annotations import Handler

def upload_user_required(handler: Handler) -> Handler:
 async def decorator(request: web.Request) -> web.Response:
 # Change ``is_user_authenticated`` call to actual call,
 # checking whether user authetnicated for given request
 # or not
 if not is_user_authenticated(request):
 raise web.HTTPForbidden()
 return await handler(request)

 return decorator

app = setup_tus(
 web.Application(),
 upload_path=Path("/files") / r"{username}",
 upload_url=r"/users/{username}/uploads",
 decorator=upload_user_required,
)

On Upload Done Callback

There is a possibility to run any coroutine after upload is done. Example below,
illustrates how to achieve that,

from aiohttp_tus.data import Resource

async def notify_on_upload(
 request: web.Request, resource: Resource, file_path: Path,
) -> None:
 redis = request.config_dict["redis"]
 await redis.rpush("uploaded_files", resource.file_name)

app = setup_tus(
 web.Application(),
 upload_path=Path(__file__).parent.parent / "uploads",
 on_upload_done=notify_on_upload,
)

Mutliple TUS upload URLs

It is possible to setup multiple TUS upload URLs. Example below illustrates, how to
achieve anonymous & authenticated uploads in same time for one
aiohttp.web.Application [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application] instance.

app = web.Application()
base_upload_path = Path(__file__).parent.parent / "uploads"

Anonymous users uploads
setup_tus(app, upload_path=base_upload_path / "anonymous")

Authenticated users uploads
setup_tus(
 app,
 upload_path=base_upload_path / r"{username}",
 upload_url=r"/users/{username}/uploads",
 decorator=upload_user_required,
)

Upload resource name

In most cases there is no need to specify aiohttp.web.Resource [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Resource] name for upload
resource, but when it is necessary, it is possible to specify custom
upload_resource_name and lately use it for URL reversing.

Example below illustrates how to achieve it,

In app.py,

setup_tus(
 web.Application(),
 upload_path=(
 Path(__file__).parent.parent / "uploads" / r"{username}"
),
 upload_url="/user/{username}/uploads",
 upload_resource_name="user_upload",
)

In views.py,

async def user_profile(request: web.Request) -> web.Response:
 upload_url = request.app.router["uploads"].url_for(
 username=request.match_info["username"]
)
 return aiohttp_jinja2.render(
 "users/profile.html",
 request,
 {"upload_url": upload_url},
)

API Reference

aiohttp_tus

	
aiohttp_tus.setup_tus(app, *, upload_path, upload_url='/uploads', upload_resource_name=None, allow_overwrite_files=False, decorator=None, on_upload_done=None, json_dumps=<function dumps>, json_loads=<function loads>)

	Setup tus protocol server implementation for aiohttp.web application.

It is a cornerstone of aiohttp-tus library and in most cases only thing
developers need to know for setting up tus.io server for aiohttp.web application.

	Parameters

	
	app (Application) – aiohttp.web.Application [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application] instance

	upload_path (Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] instance to point the directory where to store uploaded
files. Please, esnure that given directory is exists before application start
and is writeable for current user.

It is possible to prepend any match_info param from named URL.

	upload_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – tus.io upload URL. Can be plain as /uploads or named as
/users/{username}/uploads. By default: "/uploads"

	upload_resource_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – By default aiohttp-tus will provide auto name for the upload resource, as
well as for the chunk resource. But sometimes it might be useful to provide
exact name, which can lately be used for URL reversing.

	allow_overwrite_files (bool [https://docs.python.org/3/library/functions.html#bool]) – When enabled allow to overwrite already uploaded files. This may harm
consistency of stored data, cause please use this param with caution. By
default: False

	decorator (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Request], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][StreamResponse]]], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Request], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][StreamResponse]]]]) – In case of guarding upload views it might be useful to decorate them with
given decorator function. By default: None (which means ANY client will
able to upload files)

	on_upload_done (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Request, Resource, Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]], Awaitable [https://docs.python.org/3/library/typing.html#typing.Awaitable][None]]]) – Coroutine to call after upload is done. Coroutine will receive three arguments:
request, resource & file_path. Request is current
aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request] instance. Resource will contain all data about
uploaded resource such as file name, file size
(aiohttp_tus.data.Resource instance). While file path will contain
pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] instance of uploaded file.

	json_dumps (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Any [https://docs.python.org/3/library/typing.html#typing.Any]], str [https://docs.python.org/3/library/stdtypes.html#str]]) – To store resource metadata between chunk uploads aiohttp-tus using JSON
files, stored into upload_path / ".metadata" directory.

To dump the data builtin Python function used: json.dumps() [https://docs.python.org/3/library/json.html#json.dumps], but you
might customize things if interested in using ujson, orjson,
rapidjson or other implementation.

	json_loads (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – Similarly to json_dumps, but for loading data from JSON metadata files.
By default: json.loads() [https://docs.python.org/3/library/json.html#json.loads]

	Return type

	Application

aiohttp_tus.data

	
class aiohttp_tus.data.Resource(file_name, file_size, offset, metadata_header, uid=NOTHING)

	Dataclass to store resource metadata.

Given dataclass used internally in between resource chunk uploads and is passed
to on_upload_done callback if one is defined at aiohttp_tus.setup_tus()
call.

	Parameters

	
	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Resource UUID. By default: str(uuid.uuid4())

	file_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Resource file name.

	file_size (int [https://docs.python.org/3/library/functions.html#int]) – Resource file size.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Current resource offset.

	metadata_header (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metadata header sent on initiating resource upload.

Authors & Contributors

aiohttp-tus is a @pylotcode [https://github.com/pylotcode] project, which never
happened without its authors & contributors, who listed below.

	Igor Davydenko [https://github.com/playpauseandstop]

	Alwin Wang [https://github.com/Dogfalo]

Changelog

1.0.0 (2020-06-08)

	Final 1.0.0 release, which marks aiohttp-tus as library ready to be used in
production

1.0.0rc1 (2020-04-02)

	Fix upload large files via multiple chunks

1.0.0rc0 (2020-03-26)

	Add example to ensure that upload via Uppy [https://uppy.io] JavaScript library
works as expected

	Fix resuming uploads by passing missed Upload-Length header:
#5 [https://github.com/pylotcode/aiohttp-tus/pull/5]

	Add documentation about CORS Headers [https://aiohttp-tus.readthedocs.io/en/latest/usage.html#cors-headers]

	Allow to provide upload resource name, which can be lately used for URL reversing

1.0.0b2 (2020-03-18)

	Ensure trailing slash upload URLs working as well

1.0.0b1 (2020-03-18)

	Add brief documentation

	Use canonical upload URL for tus config mapping

1.0.0b0 (2020-03-15)

	Allow to setup tus upload URLs multiple times for one aiohttp.web application

	Allow to call callback after upload is done

	Provide many unit tests for tus views

1.0.0a1 (2020-03-12)

	Allow to decorate upload views for authentication or other (for example to check
whether entity for upload exists or not) needs

	Allow to upload on named upload paths, when using named upload URLs

	Ensure named upload URLs (e.g. /user/{username}/uploads) works as well

	Ensure package is typed by adding py.typed

1.0.0a0 (2020-03-11)

	First public release with minimal valuable coverage of tus.io protocol for
aiohttp.web applications

Index

 R
 | S

R

 	
 	Resource (class in aiohttp_tus.data)

S

 	
 	setup_tus() (in module aiohttp_tus)

 nav.xhtml

 Table of Contents

 		
 aiohttp-tus

 		
 Usage

 		
 Default

 		
 Understanding tus.io Chunk Size

 		
 aiohttp.web configuration

 		
 nginx configuration

 		
 tus.py configuration

 		
 uppy.io Configuration

 		
 CORS Headers

 		
 Reverse proxy and HTTPS

 		
 User Uploads

 		
 On Upload Done Callback

 		
 Mutliple TUS upload URLs

 		
 Upload resource name

 		
 API Reference

 		
 aiohttp_tus

 		
 aiohttp_tus.data

 		
 Authors & Contributors

 		
 Changelog

 		
 1.0.0 (2020-06-08)

 		
 1.0.0rc1 (2020-04-02)

 		
 1.0.0rc0 (2020-03-26)

 		
 1.0.0b2 (2020-03-18)

 		
 1.0.0b1 (2020-03-18)

 		
 1.0.0b0 (2020-03-15)

 		
 1.0.0a1 (2020-03-12)

 		
 1.0.0a0 (2020-03-11)

_static/file.png

_static/minus.png

_static/plus.png

